OUR GOAL IS TO UNDERSTAND MECHANISMS OF MEMORY PROCESSING ON THE LEVEL OF BRAIN NEURAL NETWORKS. WE FOCUS ON HIPPOCAMPAL CIRCUITS AND THEIR INTERACTIONS WITH NEOCORTICAL AREAS. HIPPOCAMPAL SYSTEM HAS BEEN FOUND CRUCIAL FOR DECLARATIVE MEMORY IN HUMANS AND CERTAIN TYPES OF COGNITIVE ABILITIES IN ANIMALS, NAMELY FOR ORIENTATION AND SPATIAL MEMORY. BECAUSE WE CAN READ THE INFORMATION CODE IN HIPPOCAMPAL PYRAMIDAL CELLS RELATIVELY WELL, THIS SYSTEM THUS PROVIDES A FASCINATING FIELD OFFERING A DIRECT INSIGHT INTO MECHANISMS OF HOW BRAIN REPRESENTS EXTERNAL WORLD AND HOW THIS INFORMATION IS LATER RECALLED.

THE LAB'S CONCEPT IS TO SYSTEMATICALLY EXPLORE PROPERTIES OF MEMORY PROCESSING ACROSS NETWORKS WITHIN HIPPOCAMPUS AND CONNECTED CORtical AREAS. WE MAINLY RECORD ELECTRIC ACTIVITY FROM POPULATIONS OF PLACE CELLS IN LABORATORY RATS AND DECODE THE NEURAL INFORMATION IN HIGH TEMPORAL RESOLUTION. THIS ENABLES TO STUDY DETAILED KINETICS OF MEMORY PROCESSING AND TO RELATE IT WITH LOCAL BRAIN OSCILLATIONS AND BEHAVIOR.
SELECTED PUBLICATIONS